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Abstract

Open-loop optimal control theory is formulated and applied to damp out the vibrations of a beam where the
control action is implemented using piezoceramic actuators. The optimal control law is derived by using a maximum
principle developed for one-dimensional structures where the control function appears in the boundary conditions in

the form of a moment. The objective function is speci®ed as a weighted quadratic functional of the displacement
and velocity which is to be minimized at a speci®ed terminal time using continuous piezoelectric actuators. The
expenditure of control force is included in the objective functional as a penalty term. The explicit solution of the

problem is developed for cantilever beams using eigenfunction expansions of the state and adjoint variables. The
e�ectiveness of the proposed control mechanism is assessed by plotting the displacement and velocity against time.
It is shown that both quantities are damped out substantially as compared to an uncontrolled beam and this
reduction depends on the magnitude of the control moment. The capabilities of piezo actuation are also investigated

by means of control moment versus piezo and beam thickness graphs which indicate the required minimum level of
voltage to be applied on piezo materials in relation to geometric dimensions of the combined active/passive
structure. The graphs show the magnitude of the control moment which can be achieved using piezoceramics in

terms of problem inputs such as voltage, piezo and beam thicknesses. 7 2000 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Piezoelectric actuators have proved to be e�ective control devices for active control of structural
vibrations and presently are in use in a wide range of engineering applications. Piezo materials can be
integrated into various structural components and utilized for distributed sensing and active damping of
vibrations. The reviews by Crawley (1994) and Rao and Sunar (1994) provide comprehensive overviews
of the published work in this ®eld and the books by Miu (1993) and Banks et al. (1996) treat the control
aspects using piezoelectric materials.

One of the widely used piezo materials in active vibration control is piezoceramics because of their
light weight, large useful bandwidth, mechanical simplicity, e�cient conversion of electrical and
mechanical energy, ability to be easily integrated with the structure and sti�ness. The resulting
intelligent structure can be controlled by implementing a suitable control algorithm with the
piezoceramics providing the actuation. Feedback control algorithms such as rate feedback, independent
modal space control and coupled mode control can be used in the vibration control of distributed
structures (Hong et al., 1998). However, in the case of rate feedback control, there are some di�culties
in deciding the control gain. Independent modal space control can be implemented using general control
algorithms which require a fully distributed actuator and sensor. Therefore, it is a di�cult technique to
implement experimentally and the control system may change the structural characteristics (Hong et al.,
1998). The coupled mode optimal control algorithm leads to a Ricatti equation, the solution of which is
usually computationally time consuming. So far feedback control algorithms were used almost
exclusively for the control of intelligent structures. Recent examples of this approach for vibration
control can be found in Baz and Poh (1996), Chandrashekhara and Donthireddy (1997), Hong et al.
(1998), Hsu et al. (1998), Kwak and Han (1998) and Ray (1998).

At this stage, there seems to be no studies using open-loop control approaches for vibration
suppression in intelligent structures controlled by piezo actuators. The present study aims at ®lling the
gap in this area using the optimal control theory of distributed parameter systems. The open-loop
methods are known to have advantages of e�ciency and accuracy as compared to closed-loop
algorithms. Moreover, time delays in the implementation of a feedback control system may cause
robustness problems (Datko, 1988) and in fact may destabilize the structure in certain cases (Sloss et al.,
1992). A speci®c example of open-loop boundary control of a longitudinally vibrating rod was studied
by Sadek et al. (1997) where the optimal control law was derived using a maximum principle. Boundary
control of vibrating beams using a feedback control approach was given by Baz (1997) and Librescu
and Na (1998a, 1998b, 1998c) where cantilever beams under velocity and acceleration feedback control
were studied.

In the present study, the open-loop control results are obtained using a recently developed maximum
principle for the optimal boundary control of one-dimensional structures (Sloss et al., 1998). For this
purpose, the piezo-control problem is formulated as an optimal boundary control problem using the
applied voltage as the control function. The objective function is speci®ed as a quadratic functional of
displacement, velocity and the expenditure of control force which is added as a penalty term. The open-
loop control law is derived by introducing the adjoint problem and the related Hamiltonian in the form
of a maximum principle. This approach leads to a system of coupled partial di�erential equations
subject to initial, terminal and boundary conditions. Explicit solutions of the problem are obtained
using eigenfunction expansions of the state and adjoint variables for a clamped-free beam with
continuous piezoceramic actuators.

The e�ectiveness of the proposed control system is illustrated numerically by plotting the curves of
de¯ection and velocity against time. These results indicate that the vibrations of the beam can be
reduced substantially at a given terminal time by exercising open-loop piezo control. Furthermore, the
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reductions in displacement and velocity depend on the magnitude of the control moment which in turn
depends on the penalty attached to the expenditure of control energy. Presently, an important issue
involving piezo materials is their authority in exercising control on vibrating structures. In the present
paper, we address this question by plotting non-dimensional graphs of control moment and piezo
actuator thicknesses so that an assessment can be made of the required ratio of actuator to beam
thickness to achieve a certain level of control for a given magnitude of applied voltage. The graphs also
indicate the maximum control moment which can be achieved for a given set of input parameters.

2. Equation of motion for a piezoelectric beam

Consider a beam of length L, width b and height hb sandwiched between two layers of piezoelectric
material each of thickness hp. Dimensions L, b and hb are measured along the X-, Y-, and Z-axis,
respectively, as shown in Fig. 1. The beam is cantilevered with X = 0 denoting the clamped end. When
the control moment induced by the piezo actuators is not a function X, the di�erential equation
governing the transverse vibrations of a piezoelectric beam is given by

rbW �T �T � EIWXXXX � 0, 0 < X < L, 0 < �T < Tfinal �1�

where r is the mass per unit length of the layered beam such that r � rbhb � 2rphp, in which rb and rp

denote the densities of the beam and piezo materials, respectively, EI is the bending sti�ness of the beam
including the piezoceramic layers, W is the transverse displacement of the beam and T®nal is a given

Fig. 1. Cantilever beam with distributed actuator layers.
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terminal time. The subscripts �T and X refer to di�erentiation with respect to these independent
variables. The term EI is de®ned as the combined sti�ness of the beam and sti�ener±actuators and is
given by:

EI � EbIb � 2bEp

3

"�
hb

2
� hp

�3

ÿ
�
hb

2

�3
#

�2�

in which EbIb is the bending sti�ness of the beam and Ep is the modulus of elasticity of the piezoelectric
material. The beam is subject to the clamped-free boundary conditions

W
ÿ
0, �T

�
� 0, WX

ÿ
0, �T

�
� 0,

EIWXX

ÿ
L, �T

�
� ra

1bd312EpVp
� �T�, WXXX

ÿ
L, �T

�
� 0, 0R �TRTfinal �3�

where ra
1 � �hb � hp�=2 is the e�ective moment arm, d31 is the piezo constant, and Vp

�T is the applied
voltage. The initial conditions for this problem are taken as:

W�X, 0� � F�X�, W �T�X, 0� � G�X�, 0 < X < L �4�

To derive a dimensionless equation of motion, the following expressions are introduced

w�x, t� � W
ÿ
X, �T

�
L

, x � X

L
, t �

�T

L2

�������
EI

rb

s
, T � Tfinal

L2

�������
EI

rb

s
�5�

where w�x, t�, x, and t are the dimensionless transverse displacement, position, and time, respectively.
Substituting Eq. (5) into Eqs. (1), (3) and (4) results in the following dimensionless equation of motion:

wtt � wxxxx � 0, 0 < x < 1, 0 < t < T �6�

subject to the boundary conditions

w�0, t� � 0, wx�0, t� � 0, wxx�1, t� � a�t�, and wxxx�1, t� � 0, 0RtRT �7�

and initial conditions:

w�x, 0� � f�x�, wt�x, 0� � g�x�, 0 < x < 1 �8�

where f �x� � F�X �=L and g�x� � L
���������������������rb�=�EI �p

G�X � are non-dimensional functions. The moment control
is then:

a�t� � 2ra
1bd31EpLVp�t�

EI
�9�
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3. Optimal control problem

The objective of the control is to minimize the dynamic response of the beam with a limited
expenditure of control energy. These objectives are expressed by de®ning a performance index given by

J�a� �
�1
0

�
m1w

2�x, T� � m2w
2
t �x, T�

�
dx�

�T
0

m3a
2�t� dt �10�

where m1, m2 > 0, and m3 > 0 are weight constants with m1 � m2 > 0: The last term in Eq. (10) is a
penalty term on control energy.

The optimal control is de®ned as a��t� 2 Uad�faja 2 L2�0, T �g such that

J�a�� � min
a2Uad

J�a� �11�

with w�x, t� subject to Eqs. (6)±(9).
The solution of the control problem (11) is obtained by introducing an adjoint problem with the

adjoint variable v�x, t� satisfying the non-dimensional di�erential equation:

vtt � vxxxx � 0, 0 < x < 1, 0 < t < T �12�

with boundary conditions

v�0, t� � 0, vx�0, t� � 0, vxx�1, t� � 0, vxxx�1, t� � 0 �13�

and terminal conditions

v�x, T� � ÿ2m2wt�x, T�, vt�x, T� � 2m1w�x, T� �14�

The maximum principle formulated in Sloss et al. (1998) states that a��t� is the optimal boundary
control function of Eq. (11) if

max
aEUad

H
�
t; v0x�1, t�, a�t�

� � H
�
t; v0x�1, t�, a0�t�

� �15�

almost everywhere in �0, 1� � �0, T � where

H
�
t; vx�1, t�, a�t�

� � vx�1, t�a�t� ÿ m3a
2�t� �16�

then

a��t� � a0�t� �17�

From Eqs. (16) and (17), it follows that the optimal control function a��t� is given by

a��t� � 1

2m3
v0x�1, t� �18�

To determine the optimal control function a��t�, v0x�1, t� needs to be evaluated, such that v0�x, t� is the
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solution of the adjoint equation (12) subject to the boundary and terminal conditions (13) and (14). The
solution of the adjoint problem, v0�x, t�, and the solution of the piezoelectric beam, w�x, t�, are coupled
through the terminal conditions and the optimality condition (18). Fig. 2 demonstrates a schematic
presentation of the boundary control problem. The derivation of the adjoint operator, the terminal
conditions, and the optimal boundary moment control are given in the next section.

4. Adjoint problem and the optimal control function

We note that�T
0

�1
0

�LDw�v0 dx dt � 0 �19�

where L is an operator with L�w� � wtt � wxxxx, v
0 is the adjoint variable corresponding to the optimal

boundary moment control a0, and Dw � wÿ w0, in which w0 is the optimal displacement. Using the
operator L gives Lw � 0 and Lw0 � 0: Eq. (19) can be expanded as�T

0

�1
0

�Dwtt � Dwxxxx �v0 dx dt � 0 �20�

Integrating Eq. (20) twice by parts, one obtains�T
0

�1
0

�LDw�v0 dx dt �
�T
0

�1
0

ÿ
Dw v0tt � Dw v0xxxx

�
dx dt�

�1
0

�
Dwtv

0 ÿ Dw v0t
�T
0 dx�

�T
0

�
Dwxxxv

0

ÿ Dwxxv
0
x � Dwxv

0
xx ÿ Dwv0xxx

�1
0 dt �21�

where the ®rst term on the right-hand side of Eq. (21) can be replaced by

Dw v0tt � Dw v0xxxx � DwL��v0� �22�

in which L���@ 2=@ t2���@4=@x4� is the adjoint operator.
Incorporating the initial conditions, the second term of Eq. (21) becomes�1

0

�Dwt�x, T�v0�x, T�|���������������{z���������������}
�1�

ÿ Dw�x, T�v0t �x, T��|��������������{z��������������}
�2�

dx � I �23�

after using the following relations:

Dwt�x, 0�v0�x, 0� � 0 since wt�x, 0� � g�x�, w0
t �x, 0� � g�x�

Dw�x, 0�v0t �x, 0� � 0 since w�x, 0� � f�x�, w0�x, 0� � f�x� �24�

The last term in Eq. (21) expands to the following expression once the boundary conditions are
incorporated
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�T
0

�
Dwxxx�1, t�v0�1, t� ÿ Dwxx�1, t�v0x�1, t� � Dwx�1, t�v0xx�1, t� ÿ Dw�1, t�v0xxx�1, t�

ÿ Dwxxx�0, t�v0�0, t� � Dwxx�0, t�v0x�0, t� ÿ Dwx�0, t�v0xx�0, t� � Dw�0, t�v0xxx�0, t�
�

dt

� II �25�

Eq. (25) can be simpli®ed to obtain�T
0

�ÿ Da�t�v0x�1, t�
�

dt � II �26�

after the incorporation of the following boundary conditions

Dw�0, t� � 0, Dwx�0, t� � 0, Dwxx�1, t� � Da�t� � aÿ a0, Dwxxx�1, t� � 0

v0�0, t� � 0, v0x�0, t� � 0, v0xx�1, t� � 0, vxxx�1, t� � 0 �27�

Moreover, rewriting Eq. (21) and using Eqs. (23) and (26) gives�T
0

�L
0

��LDw�v0 ÿ DwL��v0�
�

dx dt � Iÿ
�T
0

Da�t�v0x�1, t� dt � 0 �28�

With the use of Taylor series expansion and Eq. (10), the following can be de®ned

J�a� ÿ J�a0 � �
�1
0

24
2m1w

0Dw
z�����}|�����{�2�

� m1r1 � 2m2w
0
tDwt

z������}|������{�1�

� m2r2

35
dx�

�t
0

m3

h
a2�x, t� ÿ a0

2�x, t�
i

dt �29�

where r1 > 0 and r2 > 0:
The terminal conditions are obtained by equating parts (1) and (2) of Eqs. (23) and (29). The terminal

conditions then are

v0�x, T� � ÿ2m2w0
t �x, T�, v0t �x, T� � 2m1w

0�x, T� �30�

Thus, Eq. (29) can be written as

J�a� ÿ J�a0 � �
�1
0
�m1r1 � m2r2� dxÿ I�

�T
0

m3

h
a2�t� ÿ a0

2 �t�
i

dt �31�

where from Eq. (28)

I �
�T
0

Da�t�v0x�1, t� dt �32�

Deleting the ®rst term on the right-hand side of Eq. (31), which is always positive, gives the inequality
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J�a� ÿ J�a0 � �
�T
0

h
ÿ Da�t�v0x�1, t� � m3

h
a2�t� ÿ a0

2 �t�
ii

dtr0 �33�

which implies that

ÿDa�t�v0x�1, t� � m3
ÿ
a2 ÿ a0

2
�
r0 �34�

This can be rewritten as

a0�t�v0x�1, t� ÿ m3a
0 2ra�t�v0x�1, t� ÿ m3a

2 �35�

A ``Maximum Principle'' is introduced to obtain the optimal moment function. De®ning

H
ÿ
t; v0x, a

� � av0x�1, t� ÿ m3a
2�t� �36�

such that

max
a2Uad

H
ÿ
t; v0x, a

�
� H

ÿ
t; v0x, a

0
�

�37�

Hence,

max
a2Uad

�
av0x�1, t� ÿ m3a

2�t�� � max
a2Uad

24ÿ m3

(
v0x�1, t�
2m3

ÿ a�t�
)2

� 1

4m3
v0

2

x �1, t�
35 �38�

if "
v0x�1, t�
2m3

ÿ a�t�
#
a�a0
� 0 �39�

and then

a0 � v0x�1, t�
2m3

�40�

where a0 is the optimal boundary moment control which maximizes the function in Eq. (36).

5. Method of solution

Consider the equation of motion of the cantilever beam in non-dimensional form

wtt � wxxx � 0, 0 < x < 1, 0 < t < T �41�

where the boundary and initial conditions are de®ned in Eqs. (7) and (8). The expression for the optimal
control a0�t� is given in terms of v0�1, t� in Eq. (40) where v0�x, t� is the solution of the adjoint problem:
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v0tt � v0xxxx � 0 �42�

subject to the boundary and terminal conditions

v0�0, t� � 0, v0x�0, t� � 0, v0xx�1, t� � 0, v0xxx�1, t� � 0

v0�x, T� � ÿ2m2w0
t �x, T�, v0t �x, T� � 2m1w

0�x, T� �43�

The above problem contains a non-homogeneous boundary condition in Eq. (7) and can be converted
to a problem with homogeneous boundary conditions for ease of solution. The conversion is achieved
by de®ning a new variable �w such that

�w�x, t� � w�x, t� ÿ s�x�a�t� �44�

where s�x� is to be determined to obtain homogenous boundary conditions for �w�x, t�: The new problem
is solved for �w from the converted equation of motion

�wtt � �wxxxx � ÿs�x��a�t� 0 < x < 1, 0 < t < T �45�

where the overdots refer to di�erentiation with respect to t. The boundary and initial conditions are
expressed in terms of the newly de®ned variable, viz.,

�w�0, t� � 0, �wx�0, t� � 0, �wxx�1, t� � 0, �wxxx�1, t� � 0 �46�

and

�w�x, 0� � f�x� ÿ s�x�a�0�, �wt�x, 0� � g�x� ÿ s�x�_a�0� �47�

where f �x� � w�x, 0� and g�x� � wt�x, 0� are the previously de®ned initial conditions.
The solution of Eq. (45) is obtained in the form

�w�x, t� �
X1
n�1

�wn�t�fn�x� �48�

where fn�x� are the eigenfunctions of the uncontrolled cantilever beam problem which are expressed as

fn�x� � ÿ
�

sinh bn ÿ sin bn
cosh bn � cos bn

�ÿ
sinh bnxÿ sin bnx

�� ÿcosh bnxÿ cos bnx
� �49�

in which bn are the eigenvalues. The characteristic equation for the eigenvalues is cos b� cosh b � ÿ1:
Similarly, the solution of the adjoint equation is expressed as

v0�x, t� �
X1
n�1

vn�t�fn�x� �50�

where vn�t� is given by

A. Lara et al. / International Journal of Solids and Structures 37 (2000) 6537±65546546



vn�t� � ancos lnt� bnsin lnt �51�

in which ln � b2
n :

Expanding s�x� in terms of the eigenfunctions fn�x� results in

s�x� �
X1
n�1

snfn�x� �52�

where

sn �

�1
0

s�x�fn�x� dx�1
0

f2
n �x� dx

�53�

Also,

�a0�t� � 1

2m3
v0xtt�1, t� �

1

2m3

X1
m�1

�vm�t�f 0m�1� �54�

where the prime denotes di�erentiation with respect to x. The function �wn�t� satis®es the di�erential
equation

��wn � l2
n �wn � ÿsn �a�t� �55�

and is expressed as

�wn�t� � dncos lnt� ensin lntÿ snl
ÿ1
n

�t
0

sin ln�tÿ x��a�x� dx �56�

The expansion of the initial conditions for w�x, t� is given by:�
f�x�
g�x�

�
�
X1
n�1

�
fn
gn

�
fn�x� �57�

where

�
fn
gn

�
�

�1
0

�
f�x�=g�x�	fn�x� dx�1

0

f2
n �x� dx

�58�

Hence, using the relation vm�0� � am, the ®rst initial condition in Eq. (47) gives

�wn�0� � dn � fn ÿ sna�0� � fn ÿ
ÿ
sn=2m3

�X1
m�1

amf
0
m
�1� �59�
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Likewise, since _vm�0� � bmlm, the second initial condition in Eq. (47) gives

_�wn�0� � enln � gn ÿ sn _a�0� � gn ÿ
ÿ
sn=2m3

�X1
m�1

bmlmf
0
m
�1� �60�

Eq. (55) and its time derivative can be written as

�w0
n�t� �

X1
m�1

�
Mnm�t�am �Nnm�t�bm

�� fncos lnt� �gn=ln�sin lnt �61�

_�w
0

n�t� �
X1
m�1

�
_Mnm�t�am � _Nnm�t�bm

�
ÿ fnlnsin lnt� gncos lnt �62�

where the variables Mnm and Nnm are given by

Mnm�t� �
�
snf

0
m
�1�=2m3

��ÿ cos lnt�
�
l2
m=ln

� �t
0

sin ln�tÿ x�cos lmx dx
�

�63�

Nnm�t� �
�
snf

0
m
�1�=2m3

��ÿ �lm=ln �sin lnt�
�
l2
m=ln

� �t
0

sin ln�tÿ x�sin lmx dx
�

�64�

The terminal conditions in terms of �w at t � T become

v0�x, T� � ÿ2m2
h

�w0
t �x, T� � s�x�_a0�T�

i
�65�

v0t �x, T� � 2m1
�

�w0�x, T� � s�x�a0�T�
�

�66�

v0n�T� � ÿ2m2
"

_�w
0

n
�T� � sn

�
1

2m3

�X1
m�1

_v0m�T�f 0m�1�
#

�67�

_v0n�T� � 2m1

"
�w0
n
�T� � sn

�
1

2m3

�X1
m�1

v0m�T�f 0m�1�
#

�68�

A system of linear equations can be formed to solve for the constants an and bn from the terminal
conditions. The system of the linear equations is in the form:

X1
m�1

G1
nmam �

X1
m�1

G2
nmbm � g1n, n � 1, 2, 3, . . . �69�
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X1
m�1

G3
nmam �

X1
m�1

G4
nmbm � g2n, n � 1, 2, 3, . . . �70�

where the Gnm constants are given by

G1
nm � dnmcos lnT� 2m2 _Mnm�T� ÿ �snm2=m3�lmsin lmTf

0
m
�1� �71�

G2
nm � dnmsin lnT� 2m2 _Nnm�T� � �snm2=m3�lmcos lmTf

0
m
�1� �72�

G3
nm � ÿdnmlnsin lnTÿ 2m1Mnm�T� ÿ �snm1=m3 �cos lmTf

0
m
�1� �73�

Fig. 3. Controlled and uncontrolled displacements versus time at x � 1:0 with T � 1:0:

Fig. 4. Controlled and uncontrolled velocities versus time at x � 1:0 with T � 1:0:

A. Lara et al. / International Journal of Solids and Structures 37 (2000) 6537±6554 6549



G4
nm � dnmlncos lnTÿ 2m1Nnm�T� ÿ �snm1=m3�lmsin lmTf

0
m
�1� �74�

in which dnm � 1 if n � m and dnm � 0 otherwise, and the g's are given by

g1n � ÿ2m2
�ÿ fnlnsin lnT� gncos lnT

� �75�

g2n � 2m1
�
fncos lnT� �gn=ln�sin lnT

� �76�

Obtaining the displacement and velocity involves ®nding the constants an and bn and then determining
dn and en from Eqs. (59) and (60). Once all constants are determined, �w0

n and _�w
0

n are obtained from Eqs.
(61) and (62).

6. Numerical results

The numerical results are given for the cantilever beam subject to the initial impact conditions
w�x, 0� � 0 and wt�x, 0� � 0:1f1�x� where f1�x� corresponds to the ®rst eigenfunction of the beam given
by Eq. (49). All the results are given for a terminal time T � 1:0 with the weighting coe�cients m1 and
m2 in the performance index (10) speci®ed as m1 � m2 � 1:0: The function s�x� used to transform the
problem with non-homogeneous boundary conditions to the one with homogeneous ones was chosen as
s�x� � x 2=2: Results for the displacement and velocity are given at the tip of the cantilever, i.e., x � 1:0:

Fig. 3 shows the curves of displacement plotted against time for the uncontrolled beam and the
controlled beams with m3 � 0:1, 1.0 and 10.0. At the terminal time T � 1:0, the de¯ection of the
uncontrolled beam is jwu�1, 1�j � 0:215 and the corresponding value for the controlled beam with m3 �
0:1 is jwc�1, 1�j � 0:038 indicating a substantial reduction of the de¯ection at the speci®ed terminal time.

Corresponding results for velocity are given in Fig. 4. At T � 1:0, the magnitude of the velocity
depends on the penalty applied on the control functional as indicated by m3 with m3 � 0:1 (the smallest

Fig. 5. Control moment a�t� versus time with T � 1:0:
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penalty) giving the lowest velocity. Again the decrease in the controlled velocities at T � 1:0 is
substantial as compared to the uncontrolled one.

The non-dimensional optimal control function given by a�t� is shown in Fig. 5 as a function of time
for m3 � 0:1, 1.0 and 10.0. As expected, the lowest m3 leads to the highest control moment. The
maximum a�t� is 0.0623 for m3 � 0:1:

The above results were given for non-dimensional quantities and the question remains whether a piezo
actuator will be able to deliver enough control moment to damp out the vibrations at the given terminal
time. More speci®cally, it is observed that to implement the control law (18) with m3 � 0:1, the piezo
actuator should be capable of achieving an a�t� value of 0.0623 as indicated in Fig. 5.

To answer this question, the relations between the maximum a, applied voltage and the thicknesses of
the piezoceramic layers and the beam have to be investigated. Towards this end, we de®ne the following
non-dimensional quantities

Hb � hb=L, Hp � hp=L, hr � hp=hb �77�

Fig. 6. Maximum control moment versus hp=hb for (a) hb=L � 0:002 and (b) hb=L � 0:005:
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By substituting EI from Eq. (2) into a�t� in Eq. (9), we obtain

a�t� � Cd31 Vp�t�=hb �78�

where C is the non-dimensional constant given by

C � ÿhr � h2
r

�
Ep=

h
Hb

�
Eb=12� �2=3�Ep

�
�1=2� hr �3ÿ�1=8�

��i
�79�

The maximum voltage that can be applied to a piezoceramic material is speci®ed as 500±1000 V/mm of
piezo layer thickness (Morgan Matroc, Inc., 1993). Let this maximum value be denoted by V. Then

max
0RtRT

Vp�t� � Vhp � 103 �80�

Fig. 7. Maximum control moment versus hb=L for (a) hp=L � 0:0005 and (b) hp=L � 0:0010:
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where hp is given in meters and converted to millimeters by multiplying it by 103. Thus, from Eqs. (78)
and (80), it follows that

amax � Chrd31V� 103 �81�

where

amax � max
0RtRT

a�t�

Next, the behavior of amax (control moment) is investigated with respect to hr � hp=hb and Hb � hb=L:
For this purpose, let the beam material be speci®ed as titanium with Eb � 114 GPa and the
piezoceramic as G-1195 with Ep � 63 GPa and d31 � ÿ166� 10ÿ12 m/V.

Fig. 6 shows the curves of amax vs. hr � hp=hb for hb=L � 0:002 and 0.005. It is observed that as hr
increases, amax increases, but this increase tapers o� after about hr � 0:2: A comparison of Fig. 6a and b
indicates that increasing the beam thickness, i.e., Hb � hb=L reduces amax: In the control problem studied
above, a value of amax � 0:0623 was needed in the control process for m3 � 0:1: This can be realized by
choosing hb=L � 0:002, and then ®nding the minimum applied voltage and hr required to obtain amax

from Fig. 6a. If the beam thickness is hb=L � 0:005 (Fig. 6b), the required maximum moment cannot be
realized using the above piezoceramic material.

The dependence of amax on hb=L is investigated in Fig. 7 for Hp � hp=L � 0:0005 and 0.0010. As the
beam thickness increases, the maximum control moment drops with this drop tapering o� after about
hb=L � 0:25: As hb=L increases, the di�erences in the amax values as a function of V become quite small.
One can use Fig. 7a and b to determine the minimum voltage required to achieve a certain amax for
given values of piezo and beam thicknesses.

A comparison of Fig. 7a and b indicates that increasing hp=L ratio decreases amax value for beams of
hb=L < 0:0015, but the e�ect is opposite for thicker beams of hb=L > 0:0015:

Figs. 6 and 7 give an indication of the beam and piezo dimensions as well as the voltage required to
achieve a certain maximum moment speci®cally for titanium and G-1195 piezoceramic combination.
Similar ®gures can be plotted to determine the required voltage and piezo thicknesses to deliver a certain
control force or moment for given active and passive material combinations.

7. Conclusions

Vibrations of a beam were damped out using optimally controlled piezo actuation and the amount of
control moment that can be obtained using piezoceramic materials was determined in terms of beam
dimensions and applied voltage for a titanium beam and G-1195 piezoceramic actuator. An open-loop
control approach was adopted to derive the control law as opposed to using a feedback control
approach. The problem formulation leads to a boundary control problem as the piezo actuation term
appears in the boundary conditions as a moment function. Taking the performance index as a quadratic
functional of displacement and velocity with the expenditure of control energy attached as a penalty
term, the control law was derived in terms of an adjoint variable using a maximum principle developed
by Sloss et al. (1998). Analytical solutions of the problem were given for a cantilever beam. If a forcing
function were present in the state equation, Eq. (1), the coe�cients in the optimal control voltage would
change due to the fact that these are calculated from the terminal conditions which are in terms of the
state variable and its derivative at the terminal time.
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It was observed that the proposed control mechanism based on piezo actuation and open-loop control
mechanism was e�ective in reducing the displacement and vibration of the beam and this reduction
depended on the amount of control energy spent during the control process.

A related problem when using piezoelectric materials for vibration damping is whether piezo
actuation will be su�ciently strong to deliver the amount of force required in the control process. In
other words, the piezo actuators should be capable of generating the maximum force or moment that is
needed for controlling the vibrations. This issue was dealt with by studying the relations between four
quantities, namely, maximum actuator moment, piezo layer thickness, beam thickness and applied
voltage. The numerical results given for this purpose enable one to determine the required dimensions of
the piezo material and the beam, and the voltage once the maximum control moment is speci®ed.
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